Sebelumnyatelah dibahas mengenai nilai perbandingan trigonometri untuk sudut yang berada pada kuadran i dan ii berdasarkan sudut relasinya. Sin = cos, cos = sin, Cara 1 menggunakan komplemen 90° sehingga diperoleh cos 120° = cos (90° + 30°). Dengan kata lain, kita akan mengenal jauh lebih dalam mengenai apa yang disebut sebagai sudut.
NilaiPerbandingan Trigonometri pada berbagai kuadran. 1. A. Perbandingan Trigonometri dari sudut-sudut istimewa (0o, 30o, 45o, 60o, 90o) Materi: Mengapa dikatakan sudut istimewa karena jika suatu segitiga digambar dengan ukuran sudut-sudut tersebut membentuk perbandingan yang khas. Seperti : Untuk menggambar segitiga dengan sudut 0o dan 90o
Baiklahteman-teman.. kita akan membahas soal selanjutnya Nyatakan dalam perbandingan trigonometri sudut di kuadran I!cosec 575°Jawab:Kita gunakan aturan sudut dalam trigonometri:cosec 575° = cosec (1 . 360° + 215) = cosec 215° = cosec (180° + 35°) = - cosec 35°-----#-----Jangan lupa komentar & sarannyaEmail:
5 Sederhanakan: a. 4 sin 225° + 2 cos 300° − 2 sin 315° + 2 cos 315° b. √3 tan 240° − 2 sin 210° + √2 sin 315° + 3√3 tan 330° 4.4 Identitas Trigonometri Dalam aljabar, variabel dan konstanta biasanya merepresentasikan bilangan real. Nilai fungsi trigonometri juga bilangan real.
Vay Tiền Nhanh Ggads. Kalau kamu ingin belajar perbandingan trigonometri sudut berelasi pada kuadran satu secara lebih mendalam, coba simak penjelasan yang ada di sini. Setelah menerima materi, kamu bisa langsung mempraktikkannya dengan mengerjakan latihan soal yang telah kami sini, kamu akan belajar tentang Perbandingan Trigonometri Sudut Berelasi pada Kuadran Satu melalui video yang dibawakan oleh Bapak Anton Wardaya. Kamu akan diajak untuk memahami materi hingga metode menyelesaikan soal. Selain itu, kamu juga akan mendapatkan latihan soal interaktif dalam 3 tingkat kesulitan mudah, sedang, sukar. Oleh karenanya, pembahasan ini bisa langsung kamu praktikkan. Sekarang, kamu bisa mulai belajar dengan 1 video dan 3 set latihan soal yang ada di halaman ini. Apabila materi ini berguna, bagikan ke teman atau rekan kamu supaya mereka juga mendapatkan manfaatnya. Kamu dapat download modul & contoh soal serta kumpulan latihan soal lengkap dalam bentuk pdf pada list dibawah ini Kumpulan Soal Mudah, Sedang & Sukar
A. Pembagian Sudut dalam Trigonometri Dalam trignometri, besar suatu sudut $\alpha $ dibagi ke dalam 4 kuadran, yaitu Kuadran I $0^\circ < \alpha < 90^\circ $ Kuadran II $90^\circ < \alpha < 180^\circ $ Kuadran III $180^\circ < \alpha < 270^\circ $. Kuadran IV $270^\circ < \alpha < 360^\circ $. Perhatikan gambar berikut! B. Menentukan Nilai Perbandingan Trigonometri di Berbagai Kuadran Perhatikan gambar berikut! $\alpha $ adalah sudut yang dibentuk oleh garis OP dan sumbu X positif di titik O0,0. Perbandingan trigonometri Diketahui titik Px,y, $\alpha $ adalah sudut yang dibentuk oleh garis OP panjangnya r dan sumbu X positif di titik O0,0, maka $\sin \alpha =\frac{PQ}{OP}\Rightarrow \sin \alpha =\frac{y}{r}\Leftrightarrow \csc \alpha =\frac{r}{y}$ $\cos \alpha =\frac{OQ}{OP}\Rightarrow \cos \alpha =\frac{x}{r}\Leftrightarrow \sec \alpha =\frac{r}{x}$ $\tan \alpha =\frac{PQ}{OQ}\Rightarrow \tan \alpha =\frac{y}{x}\Leftrightarrow \csc \alpha =\frac{x}{y}$ 1. Nilai Perbandingan Trigonometri di Kuadran I Perhatikan gambar berikut! Dari titik $a,b$ diperoleh $x=a$, $y=b$ Perbandingan trigonometri $\sin \alpha =\frac{y}{r}=\frac{b}{r}positif$ $\cos \alpha =\frac{x}{r}=\frac{a}{r}positif$ $\tan \alpha =\frac{y}{x}=\frac{b}{a}positif$ $\csc \alpha =\frac{r}{y}=\frac{r}{b}positif$ $\sec \alpha =\frac{r}{x}=\frac{r}{a}positif$ $\cot \alpha =\frac{x}{y}=\frac{a}{b}positif$ Jadi, nilai perbandingan trigonometri sudut di kuadran I semuanya positif. 2. Nilai Perbandingan Trigonometri di Kuadran II Perhatikan gambar berikut! Dari Titik $-a,b$ diperoleh $x=-a$ dan $y=b$ Perbandingan trigonometri $\sin \alpha =\frac{y}{r}=\frac{b}{r}positif$ $\cos \alpha =\frac{x}{r}=\frac{-a}{r}negatif$ $\tan \alpha =\frac{y}{x}=\frac{b}{-a}negatif$ $\csc \alpha =\frac{r}{y}=\frac{r}{b}positif$ $\sec \alpha =\frac{r}{x}=\frac{r}{-a}negatif$ $\cot \alpha =\frac{x}{y}=\frac{-a}{b}negatif$ Jadi, nilai perbandingan trigonometri sudut di kuadran II, sinus dan cosecan positif. 3. Nilai Perbandingan Trigonometri di Kuadran III Perhatikan gambar berikut! Dari titik $-a,-b$ maka $x=-a$ dan $y=-b$ Perbandingan Trigonometri $\sin \alpha =\frac{y}{r}=\frac{-b}{r}negatif$ $\cos \alpha =\frac{x}{r}=\frac{-a}{r}negatif$ $\tan \alpha =\frac{y}{x}=\frac{-b}{-a}=\frac{a}{b}positif$ $\csc \alpha =\frac{r}{y}=\frac{r}{-b}negatif$ $\sec \alpha =\frac{r}{x}=\frac{r}{-a}negatif$ $\cot \alpha =\frac{x}{y}=\frac{-a}{-b}=\frac{a}{b}positif$ Jadi, nilai perbandingan trigonometri sudut di kuadran III, tangen dan cotangen positif. 4. Nilai Perbandingan Trigonometri di Kuadran IV Perhatikan gambar berikut! Dari titik $a,-b$ maka $x=a$ dan $y=-b$ Perbandingan Trigonometri $\sin \alpha =\frac{y}{r}=\frac{-b}{r}negatif$ $\cos \alpha =\frac{x}{r}=\frac{a}{r}positif$ $\tan \alpha =\frac{y}{x}=\frac{-b}{a}negatif$ $\csc \alpha =\frac{r}{y}=\frac{r}{-b}negatif$ $\sec \alpha =\frac{r}{x}=\frac{r}{a}positif$ $\cot \alpha =\frac{x}{y}=\frac{a}{-b}negatif$ Jadi, nilai perbandingan trigonometri sudut di kuadran IV, cosinus dan secan positif. Kesimpulan Nilai Perbandingan Trigonometri di Berbagai Kuadran Contoh Soal dan Pembahasan Contoh 1. Diketahui $\alpha $ adalah sudut lancip dan $\sin \alpha =\frac{12}{13}$, maka $\tan \alpha +\cos \alpha $ = ... Penyelesaian $\sin \alpha =\frac{12}{13}=\frac{de}{mi}$ Gambar segitiga siku-siku sesuai perbandingan tersebut. Teorema pythagoras $\begin{align}sa &=\sqrt{mi^2-de^2} \\ &=\sqrt{13^2-12^2} \\ &=\sqrt{169-144} \\ &=\sqrt{25} \\ sa &=5 \end{align}$ $\alpha $ adalah sudut lancip kuadran I maka semua perbandingan trigonometri bernilai positif. $\tan \alpha =\frac{de}{sa}=\frac{12}{5}$ $\cos \alpha =\frac{sa}{mi}=\frac{5}{13}$ maka $\tan \alpha +\cos \alpha =\frac{12}{5}+\frac{5}{13}=\frac{181}{65}$Contoh 2. Diketahui $\beta $ adalah sudut tumpul dan $\cos \beta =-\frac{4}{5}$, maka $\sin \beta .\tan \beta $ = ... Penyelesaian $\cos \beta =-\frac{4}{5}=\frac{sa}{mi}$ Gambar segitiga sesuai perbandingan tersebut, “abaikan” tanda negatif. Teorema pythagoras $\begin{align}de &=\sqrt{mi^2-sa^2} \\ &=\sqrt{5^2-4^2} \\ &=\sqrt{25-16} \\ &=\sqrt{9} \\ de &=3 \end{align}$ $\beta $ adalah sudut tumpul kuadran II maka $\sin \beta +$ dan $\csc \beta +$. $\sin \beta =\frac{de}{mi}=\frac{3}{5}$ $\tan \beta =-\frac{de}{sa}=-\frac{3}{4}$ maka $\sin \beta \times \tan \beta =\frac{3}{5}\times \left -\frac{3}{4} \right=-\frac{9}{20}$Contoh 3. Diketahui $270^\circ < A < 360 ^\circ $ dan $\tan A=-2,4$ maka $\sin A$ = ... Penyelesaian $\begin{align}\tan A &= -2,4 \\ &= -\frac{24}{10} \\ \tan A &= -\frac{12}{5}=\frac{de}{sa} \end{align}$ Gambar segitiga siku-siku sesuai perbandingan tersebut, “abaikan” tanda negatif. Teorema pythagoras $\begin{align}mi &=\sqrt{de^2+sa^2} \\ &=\sqrt{12^2+5^2} \\ &=\sqrt{144+25} \\ &=\sqrt{169} \\ mi &=13 \end{align}$ $270^\circ < A < 360^\circ $ Kuadran IV, maka $\cos A+$ dan $\sec A+$ maka $\sin A=-\frac{de}{mi}=-\frac{12}{13}$Contoh 4. Jika $\sec \beta =-3$, dengan $\pi < \beta < \frac{3\pi }{2}$ maka $\sin \beta $ = ... Penyelesaian $\sec \beta =-3$ $\cos \beta =\frac{1}{\sec \beta }=-\frac{1}{3}=\frac{sa}{mi}$ Gambar segitiga siku-siku sesuai perbandingan tersebut, “abaikan” tanda negatif. Teorema pythagoras $\begin{align}de &=\sqrt{mi^2-sa^2} \\ &=\sqrt{3^2-1^2} \\ &=\sqrt{9-1} \\ &=\sqrt{8} \\ de &=2\sqrt{2} \end{align}$ $\pi < \beta < \frac{3\pi }{2}$ kuadran III maka $\tan \beta +$ dan $\cot \beta +$ maka $\sin \beta =-\frac{de}{mi}=-\frac{2\sqrt{2}}{3}$ Contoh 5. Diketahui $\sin A=\frac{3}{5}$ dan $\tan B=\frac{7}{24}$, jika A sudut tumpul dan B sudut lancip maka $\cos A.\sin B$ = ... Penyelesaian Sudut A $\sin A=\frac{3}{5}=\frac{de}{mi}$ Teorema pythagoras $\begin{align}sa &=\sqrt{mi^2-de^2} \\ &=\sqrt{5^2-3^2} \\ &=\sqrt{25-9} \\ &=\sqrt{16} \\ sa &=4 \end{align}$ A sudut tumpul kuadran II, maka $\sin A+$ dan $\csc A+$ maka $\cos A=-\frac{sa}{mi}=-\frac{4}{5}$ Sudut B $\tan B=\frac{7}{24}=\frac{de}{sa}$ $\begin{align}mi &=\sqrt{de^2+sa^2} \\ &=\sqrt{7^2+24^2} \\ &=\sqrt{49+576} \\ &=\sqrt{625} \\ sa &=25 \end{align}$ B sudut lancip kuadran I, nilai perbandingan trigonometri semua positif, maka $\sin B=\frac{de}{mi}=\frac{7}{25}$ $\cos A.\sin B=-\frac{4}{5}\times \frac{7}{25}=-\frac{28}{125}$ Soal Latihan Jika $\tan \alpha =\frac{8}{15}$; dengan $\alpha $ sudut di kuadran III, maka $\cos \alpha $ = ... Jika $\cos \beta =-\frac{1}{4}$, dengan $\beta $ sudut di kuadran II, maka $\sin \beta $ = ... Jika $\cot A=-\frac{12}{5}$, dengan A sudut di kuadran IV, maka $\sec A$ = ... Jika $\sin \alpha =\frac{2\sqrt{5}}{5}$, dengan $\alpha $ sudut di kuadran I, maka $\tan \alpha $ = ... Jika $\cos \alpha =-\frac{24}{25}$, $\tan \beta =\frac{9}{40}$, $\frac{\pi }{2} < \alpha < \pi $, dan $\pi < \beta < \frac{3\pi }{2}$ maka $\sin \alpha .\cos \beta $ = ... by Catatan MatematikaSemoga postingan Perbandingan Trigonometri di Berbagai Kuadran ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih. Subscribe and Follow Our Channel
nyatakan dalam perbandingan trigonometri sudut di kuadran 1